INORGANIC CHEMISTRY

UNIT 3 NOTES

GASTROINTESTINAL AGENTS

- ACIDIFIERS
- ANTACIDS
- CATHARTICS
- ANTIMICROBIAL AGENTS

CONNECT WITH US ON:

@IMPERFECTPHARMACY

IMPERFECT PHARMACY

GASTROINTESTINAL TRACT

- The gastrointestinal tract is the pathway of digestive system which helps in the digestion of food and its excretion.
 It starts from the mouth and end to the anus.
- The main portion of GIT includes the stomach, small intestine, large intestine, rectum and anus.
- · Now, whenever the function of GIT goes wrong, disease occurs.

Diseases Of GIT

- Insufficient secretion of acid in the stomach can cause Achlorhydria or Hypochlorhydria.
- Too much secretion of acid in the stomach can cause Hyperacidity.
- The insufficient bowel movement in the intestine can leads to Constipation
- Also the growth of microbes/bacterios can affect the Gastrointestinal
 Tract.

GASTROINTESTINAL AGENTS

- Agents that are used to treat gastrointestinal disturbance / diseases are known as Gastrointestinal Agents.
- Agents that are used to GIT disorders includes:
- O Acidifiers (Hypochlorhydria)
- 2 Antacids (Hyperacidity)
- 3 (athartics (Constipution)
- 4 Antimicrobials (Microbial Growth)

ACIDIFIERS

 These are the inorganic substances that are used to increase the level of gastric acid in the stomach.

They are also known as Acidifying Agents.

• They either produce acid or increase the level of acid.

· They work by decreasing the pH of stomach.

• They are used in the treatment of Achlorhydria or Hypochlorhydria.

Why Acid is Important in the Stomach?

- It breakdown the food and help in digestion.
- Kill microbes present in the food.
- Provide acidic environment needed for effective digestion.

Types Of Acidifiers

There are mainly 3 types of Acidifiers

- 1 Grastric Acidifiers
- @ Uninary Acidifiers
- 3 Systemic Acidifiers

Gastric Acidifiers

- They are mainly used to control the pH of stomach.
- These are the drugs which are used to increase the acidity of Stomach.
- These agents are mainly used in patients suffering from Achlorhydria or Hypochlorhydria.

Urinary Acidifiers

• They are mainly used in controlling the pH of urine.

• These are the drugs which are used to remove acidic unine from the body.

• These acidifiers are widely used to cure some type of Uninary Tract

Infection.

Systemic Acidifiers

• They are used to control the pH of all parts of body.

• These are the drugs which are able to neutralized the alkaline body fluid.

• It is used to treat patient suffering from Alkalosis.

AMMONIUM CHLORIDE

Molecular Formula: NH4CI

Malecular Weight: 53.49 g/mol

Synonym: Sal Ammoniac

Method of Preparation

It is prepared by the reaction of HCI with NH3 (ammonia)

NH3 + HCI - NH4CI

Physical Properties

- It is a white crystalline powder
- & It is odourless.
- It has cool soline taste
- It is hygroscopic in nature

Chemical Properties

On decomposition ammonium chloride produces ammonia gas and hydrogen chloride.

NH4CI --- NH3 + HCI

Uses of Ammonium Chloride

- · It is used as Acidifiers.
- It is used as Fertilizers.
- It is used in Glue.
- It is also used in Buffer Solutions.

DILUTE HCL

Molecular Formula: HCI

Molecular weight: 36.46

Synonym: Spirit of Salt

<u>Preparation</u>

It can be prepared by action of concentrated H2SO4 with Nac1

Nac1 + H2504 HCI + NaHSO4

Properties

- It is a colountess liquid
- It is strongly acidic
 It is soluble in water and alcohol
- It has pungent odour
 On reacting with NaOH, it gives salt and water.

HCI + NaOH Naci + H20

- It is used as acidifier
- It is mainly used as an pharmaceutical aid
- Used in many Solvents.

ANTACIDS

 Antacids are the drugs that are used to decrease the level of gastric acid in the stomach.

• They are used in the case of Hyperacidity.

• They also prevent from Heart Burn and Ulcer.

- Antacids are generally weak bases that reacts with the excessive acid in the stomach and convert them into salt.
- · They work by increasing gostoic pH.

• <u>example</u> : (aCO3, NaHCO3

Classification of Antacids

Antacids are commonly classified into two groups:

- 1 Systemic Antacids
- 2 Non- Systemic Antacids

Systemic Antacids

- Antacids which absorbs in the systemic circulation (blood circulation) are called as Systemic Antacids.
- They are not very suitable antacids as they can cause Metabolic Alkalosis (Disturbance in acid-base balance)

Non-Systemic Antacids

 Antacids which are not absorbed into systemic circulation and do not affect acid-base balance of the body are called as Non-Systemic Antacids

Ideal Properties of Antacids

- If should be insoluble in water and has fine particle form.
- It should not cause metabolic alkalosis.
- It must have its effect over a long period of time.
- It should not cause constipation.
- If should not cause any side effect.
 If should be stable and readily available.
- It should not be too expensive.

Combination of Antacids

- Systemic antacids are not used regularly as they can cause metabolic alkalosis and congestive heart failure.
- Non-systemic antacids are more effective compared to systemic alkalosis, but they also have some other side effects.
- To avoid these side effect and to increase the effect and time of duration of action antacids are generally given in combination.
- · Generally in the combination of antacids, one having a rapid action and other having longer duration of action.
- Example: Combination of Magnesium and Aluminium as Antacid
 (i) Magnesium → Fast acting
 (ii) Aluminium → Longer duration of action

SODIUM BI CARBONATE

Chemical Formula: NaHCO3

Molecular weight: 84.0.1 g/mol

Synonym: Baking Soda

Preparation

It is prepared by solvay ammonia process.

Na2 (03 + (02 + H20 2NaH@3

<u>Properties</u>

- It is a white crystalline powder.
 It is insoluble in ethanol but soluble in methanol
- It having saline taste
 It is alkaline in nature
- It is also soluble in water

- It is mainly used as antacids.
 It is used as electrolyte replenisher.
- It is also used as disinfectant.

ALUMINIUM HYDROXIDE GEL

Chemical Formula: A1 (OH)3

Molecular Weight: 78.00 g/mol

Synonym: Aluminium Hydrated Powder

Preparation

If is prepared when Aluminium Chloride is treated with Ammonium Hydroxide

AICI3 + 3 NH40H --- AI (OH) 3 + 3 NH4CI

Properties

- It is a white viscous suspension
- It is tasteless.
- It is odourless.
- It is soluble in mineral acid solution, but insoluble in water & alcohol.

- It is used as antacid
- It is used to treat heartburn

(ATHARTICS

· Cathartics are the drugs that are used to get relief from constipation.

• These are the drugs that accelerates defecation.

• Cathartics act by increasing the fluid content of Faeces, making them softer and easier to pass.

· Cathartics increases the mobility of intestine

Types of Cathartics

Cathartics are mainly classified into two categories:

- 1 Laxative
- 2 Purgative

Laxative

- Laxatives are mild acting cathartics
- · They work by either :
- Increasing intestinal movement
- Increasing stool bulk
- Make stool softener
- Prolong use of laxative may cause habit or dependency.

Purgative

They are strong cathartics

· They are given in very serious conditions.

• They are generally given to completely bemove solid materials from intestine before surgery.

(lassification (On the basis of mechanism)

- O Stimulant Cathornics
- Q Lubricants
- 3 Bulk Forming
 4 Saline Cathartics

Stimulant Calhartics: They act by producing local imitation on intestinal tract.

Lubricants: Provide lubricant effect so that stool easily passes through rectum, also known as stool softeners.

Bulk Forming: These agents increases the amount of stool production.

Saline Cathartics: They increases the osmotic load of GIIT, consumed with large amount of water.

Uses of Cathartics

- For easy defacation € Other rectal diseases.
 To relief from acute constipation.
- To remove solid material from intestinal tract before surgery.
- To avoid rise in blood pressure due to constipation.

Magnesium Sulphate

Chemical Formula: MgSO4.7H20 Molecular Weight: 246-47 g/mol

Synonym: Epsom Salt

Method of Preparation

It is obtained by the action of dilute sulphuric acid (H2SO4) and magnesium carbonate (MgCOz)

> H₂S0₄ MgS04 + H20 + CO2 Mg003 +

<u>Properties</u>

- It occurs as white crystals
- It is odoutless
- It having a cool, soline, bilter taste
- It is soluble in water and sparingly soluble in alcohol.

- It is used as cothoutics.
- It is used in agriculture.
 It is used to control seizures in pregnancy.

Sodium Orthophosphate

Chemical Formula: Na2HPO4. 12H2O

Molecular Weight: 358.14 9/ mol

Preparation

It is obtained by adding sodium carbonate to a hot solution of phosphoric acid.

 $H_3PO_4 + NO_2CO_3 \longrightarrow NO_2HPO_4 + H_2O + CO_2$

Properties

- It occurs as colourless crystals
- It is odourless
- It having a saline taste
- It is soluble in water
- It is insoluble in alcohol

- It is used as cathartics
- It is also used as buffers.

Kaolin

Molecular / Chemical Formula: Al203.25102.2H20 Molecular Weight: 258.16 9/ mol Synanym : China Clay

Preparation

It is simply prepared from natural clay by powdering, separating and purifying process.

<u>Properties</u>

- It is light, white powder.
- It is odourless
- It is tasteless

- It is used as cathartics
- It is used in food poisoning
 It is used in dusting powders.

Bentonite

Chemical formula: Al203 · 45i02 · H20

Molecular Weight: 360.31 g/mol

Synonym: Clay

Preparation

It occurs naturally or can be prepared from natural clay

Properties

- It occurs as very fine, cream-colour powder
- It is odoutless.
- It is insoluble in water.

- It is used as cathartics.
- It is used as emulsifier.
- It is also used as protectives.

ANTIMICROBIAL AGENTS

Antimicrobial agents are those chemical compounds or drugs that inhibits or destroys the growth of microorganism
 They can either kill or prevents the growth of bacteria.

Classification of Antimicrobials

- O Antiseptic
- 2 Disinfectants
- 3 Geomicides
- 4 Bacteriostatics
- Sanitizers
- © Stepilization

Antiseptic

- · Antiseptic are those antimicrobial agents that are mainly used on living cells.
- They either kills or inhibits the growth of bacteria.
 An ideal antiseptic agent should destroy bacteria, viruses etc and should not cause any harm to applied area.
- <u>example</u>: Hydrogen Peroxide, Silver nitrate etc.

Disinfectant

- These are the antimicrobial agents that are mainly used on Non-Living surfaces.
- They can either kill or destroy bacteria.
- · They are mainly used in home and hospital cleaning.
- example: Sulpher dioxide

Greomicides

- These are the agents that are used to kill microorganism.
- The can be either use on Living or Non-living surfaces.
- They can also be divided into following types

Bactericides: To kill bacteria

<u>Virucides</u>: To kill viruses

Fungicides: To kill fungi

Bacteriostatics

- These are the agents that are used to prevent the growth of bacteria.
- They do not kill bacteria
- Can be used on living or Non-living surfaces.
- · example: Chloramphenical

Sanitizers

- Sanitizers are agents that are mainly used in cleaning & washing.
- They are generally used to maintain general public health standards.
- example Soap, Alcohol etc.

Sterilization

- It is a process by which all the microorganism are either killed or removed.
- In this process, the products, surface on area will be free from all type of microorganism.

Mechanism of action of Antimicrobials

- Microorganism mainly contains proteins (enzymes) to survive.
- Anti-microbials act by changing their protein structure which results in death of microorganism.
- · Antimicrobials mainly act by 3 mechanism:
- O Oxidation
- Halogenation
- 3 Precipitation

Oxidation

- This MOA shows by oxygen releasing compounds.
- They cause oxidation of active functional groups present in proteins and inactivate them.

Halogenation

- This MOA shows by halogen (Br, (Letc) releasing compounds.

Precipitation

- This MOA shows by Metal containing compounds.
- Metal binds with important group present in protein change their structure & inactivates them.

POTASSIUM PERMANGANATE

Chemical Formula: KMn04

Molecular Weight: 158 g/mol

Synonym: Condy's Crystals

Preparation

If can be easily prepared by from potassium manganate under acidic condition

2 k2Mn04 + 4 HC1 - 2 kMn04 + Mn02 + H20 + 4kCl

Properties

- It is purple crystalline solid.
- It is odourless.
- It is soluble in both water and alcohol.

- It is used as antimicrobial agents.
- It is used in treatment of various skin conditions.
- It is used as antiseptic
- It is used as strong oxidizing agent.

BORIC ACID

Chemical Formula: H3BO3

Molecular Weight: 61.83 9/mol

Synonym: Hydrogen Borate

Preparation

It is prepared by the action of HCE on borax (Na2B407)

Na2B407 + 2HCI + 5H20 -- 2NaCI + 4H3B03

Properties

- It is white crystalline solid
- It is odourless
- If having sweet taste.
- It is soluble in water & slightly soluble in alcohol.

- It is used as anti-microbial agents.
- It is used as preservatives.
- It is also used in cosmetics.

HYDROGEN PEROXIDE

Chemical Formula: H2O2

Molecular Weight: 34.01 g/mol

Synonyms: Hydrogen Oxide, Peroxide

Preparation

It can be prepared by the reaction of sodium peroxide with dilute sulphivoic acid

> H202 + N02S04 Na202 + H2S04

Properties

- It is clear colourless liquid.
- It is odourless.
- It having a bitter taste.
 It is miscible with water.

- It is used as antimicrobial agent.
- It is used as antiseptic.
- It is used as bleaching agent.
- · Also used in tooth whitening.

CHLORINATED LIME

Chemical Formula (a Coct) 2 (a Oct 2

Molecular Weight 142 98 9/mol 136.98 9/mol

Synonym Bleaching Powder

Preparation

It is prepared by reacting chlorine with calcium hydroxide

(a (OH)2 + Cl2 --- (a OCl2 + H2O

<u>Properties</u>

- · It is white or grey powders.
- It has odour of chlorine.
- It is partially soluble in water and alcohol.

- It is used as antimicrobial agent.
- It is used as powerful bleaching agent.

TODINE

<u>Chemical Formula</u>: <u>T2</u>

Molecular Weight: 253.8 g/mol Synonym: Halogens

Preparation

In laboratory, it is prepared by heating the mixture of kI, MnO2 and concentrated H2SO4.

2KI + MnO2 + 3H2SO4 - I2 + 2KHSO4 + MnSO4 + 2H2O

Properties

- It occurs as greyish-violet or bluish-black crystals.
- It has strong harsh odour.
- It is volatile in nature.
- It is insoluble in water.
- It is soluble in alcohol.

- It is used as antimicrobial agent.
- It is used in iodine deficiency.
- It is used in thyroid cancer

JOIN US ON:

IMPERFECT PHARMACY

@IMPERFECTPHARMACY

IMPERFECT PHARMACY

